Book Image

Scala for Data Science

By : Pascal Bugnion
Book Image

Scala for Data Science

By: Pascal Bugnion

Overview of this book

Scala is a multi-paradigm programming language (it supports both object-oriented and functional programming) and scripting language used to build applications for the JVM. Languages such as R, Python, Java, and so on are mostly used for data science. It is particularly good at analyzing large sets of data without any significant impact on performance and thus Scala is being adopted by many developers and data scientists. Data scientists might be aware that building applications that are truly scalable is hard. Scala, with its powerful functional libraries for interacting with databases and building scalable frameworks will give you the tools to construct robust data pipelines. This book will introduce you to the libraries for ingesting, storing, manipulating, processing, and visualizing data in Scala. Packed with real-world examples and interesting data sets, this book will teach you to ingest data from flat files and web APIs and store it in a SQL or NoSQL database. It will show you how to design scalable architectures to process and modelling your data, starting from simple concurrency constructs such as parallel collections and futures, through to actor systems and Apache Spark. As well as Scala’s emphasis on functional structures and immutability, you will learn how to use the right parallel construct for the job at hand, minimizing development time without compromising scalability. Finally, you will learn how to build beautiful interactive visualizations using web frameworks. This book gives tutorials on some of the most common Scala libraries for data science, allowing you to quickly get up to speed with building data science and data engineering solutions.
Table of Contents (22 chapters)
Scala for Data Science
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Programming in data science


This book is not a book about data science. It is a book about how to use Scala, a programming language, for data science. So, where does programming come in when processing data?

Computers are involved at every step of the data science pipeline, but not necessarily in the same manner. The style of programs that we build will be drastically different if we are just writing throwaway scripts to explore data or trying to build a scalable application that pushes data through a well-understood pipeline to continuously deliver business intelligence.

Let's imagine that we work for a company making games for mobile phones in which you can purchase in-game benefits. The majority of users never buy anything, but a small fraction is likely to spend a lot of money. We want to build a model that recognizes big spenders based on their play patterns.

The first step is to explore data, find the right features, and build a model based on a subset of the data. In this exploration phase, we have a clear goal in mind but little idea of how to get there. We want a light, flexible language with strong libraries to get us a working model as soon as possible.

Once we have a working model, we need to deploy it on our gaming platform to analyze the usage patterns of all the current users. This is a very different problem: we have a relatively clear understanding of the goals of the program and of how to get there. The challenge comes in designing software that will scale out to handle all the users and be robust to future changes in usage patterns.

In practice, the type of software that we write typically lies on a spectrum ranging from a single throwaway script to production-level code that must be proof against future expansion and load increases. Before writing any code, the data scientist must understand where their software lies on this spectrum. Let's call this the permanence spectrum.