Book Image

Scala for Data Science

By : Pascal Bugnion
Book Image

Scala for Data Science

By: Pascal Bugnion

Overview of this book

Scala is a multi-paradigm programming language (it supports both object-oriented and functional programming) and scripting language used to build applications for the JVM. Languages such as R, Python, Java, and so on are mostly used for data science. It is particularly good at analyzing large sets of data without any significant impact on performance and thus Scala is being adopted by many developers and data scientists. Data scientists might be aware that building applications that are truly scalable is hard. Scala, with its powerful functional libraries for interacting with databases and building scalable frameworks will give you the tools to construct robust data pipelines. This book will introduce you to the libraries for ingesting, storing, manipulating, processing, and visualizing data in Scala. Packed with real-world examples and interesting data sets, this book will teach you to ingest data from flat files and web APIs and store it in a SQL or NoSQL database. It will show you how to design scalable architectures to process and modelling your data, starting from simple concurrency constructs such as parallel collections and futures, through to actor systems and Apache Spark. As well as Scala’s emphasis on functional structures and immutability, you will learn how to use the right parallel construct for the job at hand, minimizing development time without compromising scalability. Finally, you will learn how to build beautiful interactive visualizations using web frameworks. This book gives tutorials on some of the most common Scala libraries for data science, allowing you to quickly get up to speed with building data science and data engineering solutions.
Table of Contents (22 chapters)
Scala for Data Science
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Index

Spam filtering


Let's put all we've learned to good use and do some data exploration for our spam filter. We will use the Ling-Spam email dataset: http://csmining.org/index.php/ling-spam-datasets.html. The dataset contains 2412 ham emails and 481 spam emails, all of which were received by a mailing list on linguistics. We will extract the words that are most informative of whether an email is spam or ham.

The first steps in any natural language processing workflow are to remove stop words and lemmatization. Removing stop words involves filtering very common words such as the, this and so on. Lemmatization involves replacing different forms of the same word with a canonical form: both colors and color would be mapped to color, and organize, organizing and organizes would be mapped to organize. Removing stop words and lemmatization is very challenging, and beyond the scope of this book (if you do need to remove stop words and lemmatize a dataset, your go-to tool should be the Stanford NLP toolkit...