Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Evaluating relations between variables with ANOVA


Analysis of variance (ANOVA) is a statistical data analysis method invented by statistician Ronald Fisher. This method partitions data of a continuous variable using the values of one or more corresponding categorical variables to analyze variance. ANOVA is a form of linear modeling. If we are modeling with one categorical variable, we speak of one-way ANOVA. In this recipe, we will use two categorical variables so we have two-way ANOVA. In two-way ANOVA, we create a contingency table—a table containing counts for all combinations of the two categorical variables (we will see a contingency table example soon). The linear model is then given by the equation:

This is an additive model where μij is the mean of the continuous variable corresponding to one cell of the contingency table, μ is the mean for the whole data set, αi is the contribution of the first categorical variable, βj is the contribution of the second categorical variable, and...