Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Analyzing the frequency spectrum of audio


We can apply many techniques to analyze audio, and, therefore, we can debate at length about which techniques are most appropriate. The most obvious method is purportedly the FFT. As a variation, we can use the short-time Fourier transform (STFT). The STFT splits the signal in the time domain into equal parts, and it then applies the FFT to each segment. Another algorithm we will use is the cepstrum, which was originally used to analyze earthquakes but was later successfully applied to speech analysis. The power cepstrum is given by the following equation:

The algorithm is as follows:

  1. Calculate the Fourier transform.

  2. Compute the squared magnitude of the transform.

  3. Take the logarithm of the previous result.

  4. Apply the inverse Fourier transform.

  5. Calculate the squared magnitude again.

The cepstrum is, in general, useful when we have large changes in the frequency domain. An important use case of the cepstrum is to form feature vectors for audio classification...