Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By : Cyrille Rossant
Book Image

IPython Interactive Computing and Visualization Cookbook - Second Edition

By: Cyrille Rossant

Overview of this book

Python is one of the leading open source platforms for data science and numerical computing. IPython and the associated Jupyter Notebook offer efficient interfaces to Python for data analysis and interactive visualization, and they constitute an ideal gateway to the platform. IPython Interactive Computing and Visualization Cookbook, Second Edition contains many ready-to-use, focused recipes for high-performance scientific computing and data analysis, from the latest IPython/Jupyter features to the most advanced tricks, to help you write better and faster code. You will apply these state-of-the-art methods to various real-world examples, illustrating topics in applied mathematics, scientific modeling, and machine learning. The first part of the book covers programming techniques: code quality and reproducibility, code optimization, high-performance computing through just-in-time compilation, parallel computing, and graphics card programming. The second part tackles data science, statistics, machine learning, signal and image processing, dynamical systems, and pure and applied mathematics.
Table of Contents (19 chapters)
IPython Interactive Computing and Visualization CookbookSecond Edition
Contributors
Preface
Index

Plotting the bifurcation diagram of a chaotic dynamical system


A chaotic dynamical system is highly sensitive to initial conditions; small perturbations at any given time yield completely different trajectories. The trajectories of a chaotic system tend to have complex and unpredictable behaviors.

Many real-world phenomena are chaotic, particularly those that involve nonlinear interactions among many agents (complex systems). Examples can be found in meteorology, economics, biology, and other disciplines.

In this recipe, we will simulate a famous chaotic system: the logistic map. This is an archetypal example of how chaos can arise from a very simple nonlinear equation. The logistic map models the evolution of a population, taking into account both reproduction and density-dependent mortality (starvation).

We will draw the system's bifurcation diagram, which shows the possible long-term behaviors (equilibria, fixed points, periodic orbits, and chaotic trajectories) as a function of the system...