Book Image

Python Data Science Essentials - Second Edition

By : Luca Massaron, Alberto Boschetti
Book Image

Python Data Science Essentials - Second Edition

By: Luca Massaron, Alberto Boschetti

Overview of this book

Fully expanded and upgraded, the second edition of Python Data Science Essentials takes you through all you need to know to suceed in data science using Python. Get modern insight into the core of Python data, including the latest versions of Jupyter notebooks, NumPy, pandas and scikit-learn. Look beyond the fundamentals with beautiful data visualizations with Seaborn and ggplot, web development with Bottle, and even the new frontiers of deep learning with Theano and TensorFlow. Dive into building your essential Python 3.5 data science toolbox, using a single-source approach that will allow to to work with Python 2.7 as well. Get to grips fast with data munging and preprocessing, and all the techniques you need to load, analyse, and process your data. Finally, get a complete overview of principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users.
Table of Contents (13 chapters)
Python Data Science Essentials - Second Edition
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Preface

Building new features


Sometimes, you'll find yourself in a situation when features and target variables are not really related. In this case, you can modify the input dataset. You can apply linear or nonlinear transformations to improve the accuracy of the system, and so on. It's a very important step for the overall process because it completely depends on the skills of the data scientist, who is the one responsible for artificially changing the dataset and shaping the input data to better fit the learning model. Although this steps intuitively just adds complexity, this approach often boosts the performance of the learner; that's why it is used by bleeding-edge techniques, such as deep learning.

For example, if you're trying to predict the value of a house and you know the height, width, and the length of each room, you can artificially build a feature that represents the volume of the house. This is strictly not an observed feature, but it's a feature built on the top of the existing ones...