Book Image

Learning Quantitative Finance with R

By : Dr. Param Jeet, PRASHANT VATS
Book Image

Learning Quantitative Finance with R

By: Dr. Param Jeet, PRASHANT VATS

Overview of this book

The role of a quantitative analyst is very challenging, yet lucrative, so there is a lot of competition for the role in top-tier organizations and investment banks. This book is your go-to resource if you want to equip yourself with the skills required to tackle any real-world problem in quantitative finance using the popular R programming language. You'll start by getting an understanding of the basics of R and its relevance in the field of quantitative finance. Once you've built this foundation, we'll dive into the practicalities of building financial models in R. This will help you have a fair understanding of the topics as well as their implementation, as the authors have presented some use cases along with examples that are easy to understand and correlate. We'll also look at risk management and optimization techniques for algorithmic trading. Finally, the book will explain some advanced concepts, such as trading using machine learning, optimizations, exotic options, and hedging. By the end of this book, you will have a firm grasp of the techniques required to implement basic quantitative finance models in R.
Table of Contents (16 chapters)
Learning Quantitative Finance with R
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Hypothesis testing


Hypothesis testing is used to reject or retain a hypothesis based upon the measurement of an observed sample. We will not be going into theoretical aspects but will be discussing how to implement the various scenarios of hypothesis testing in R.

Lower tail test of population mean with known variance

The null hypothesis is given by  where is the hypothesized lower bound of the population mean.

Let us assume a scenario where an investor assumes that the mean of daily returns of a stock since inception is greater than $10. The average of 30 days' daily return sample is $9.9. Assume the population standard deviation is 0.011. Can we reject the null hypothesis at .05 significance level?

Now let us calculate the test statistics z which can be computed by the following code in R:

> xbar= 9.9           
> mu0 = 10            
> sig = 1.1            
> n = 30                  
> z = (xbar-mu0)/(sig/sqrt(n))  
> z  

Here:

  • xbar: Sample...