Book Image

Fast Data Processing Systems with SMACK Stack

By : Raúl Estrada
Book Image

Fast Data Processing Systems with SMACK Stack

By: Raúl Estrada

Overview of this book

SMACK is an open source full stack for big data architecture. It is a combination of Spark, Mesos, Akka, Cassandra, and Kafka. This stack is the newest technique developers have begun to use to tackle critical real-time analytics for big data. This highly practical guide will teach you how to integrate these technologies to create a highly efficient data analysis system for fast data processing. We’ll start off with an introduction to SMACK and show you when to use it. First you’ll get to grips with functional thinking and problem solving using Scala. Next you’ll come to understand the Akka architecture. Then you’ll get to know how to improve the data structure architecture and optimize resources using Apache Spark. Moving forward, you’ll learn how to perform linear scalability in databases with Apache Cassandra. You’ll grasp the high throughput distributed messaging systems using Apache Kafka. We’ll show you how to build a cheap but effective cluster infrastructure with Apache Mesos. Finally, you will deep dive into the different aspect of SMACK using a few case studies. By the end of the book, you will be able to integrate all the components of the SMACK stack and use them together to achieve highly effective and fast data processing.
Table of Contents (15 chapters)
Fast Data Processing Systems with SMACK Stack
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface

Introducing Kafka


Jay Kreps, the author of Apache Kafka says about the Kafka name:

I thought that since Kafka was a system optimized for writing using a writer's name would make sense. I had taken a lot of lit classes in college and liked Franz Kafka. Plus the name sounded cool for an open source project.

So basically there is not much of a relationship.

Apache Kafka is mainly optimized for writing (in this book when we say optimized we mean two million writes per second on a commodity cluster).

Nowadays, real-time information is continuously generated; this data needs easy ways to be delivered to multiple receivers. Most of the time, generators and consumers of information are inaccessible to each other, and here is when integration tools are required.

In the eighties, nineties and two thousands, the large software vendors (IBM, SAP, BEA, Oracle, Microsoft, Google, and so on) found a very lucrative market in the integration layer. Here we can find enterprise service buses, SOA architectures...