Book Image

Deep Learning with TensorFlow

By : Giancarlo Zaccone, Md. Rezaul Karim, Ahmed Menshawy
Book Image

Deep Learning with TensorFlow

By: Giancarlo Zaccone, Md. Rezaul Karim, Ahmed Menshawy

Overview of this book

Deep learning is the step that comes after machine learning, and has more advanced implementations. Machine learning is not just for academics anymore, but is becoming a mainstream practice through wide adoption, and deep learning has taken the front seat. As a data scientist, if you want to explore data abstraction layers, this book will be your guide. This book shows how this can be exploited in the real world with complex raw data using TensorFlow 1.x. Throughout the book, you’ll learn how to implement deep learning algorithms for machine learning systems and integrate them into your product offerings, including search, image recognition, and language processing. Additionally, you’ll learn how to analyze and improve the performance of deep learning models. This can be done by comparing algorithms against benchmarks, along with machine intelligence, to learn from the information and determine ideal behaviors within a specific context. After finishing the book, you will be familiar with machine learning techniques, in particular the use of TensorFlow for deep learning, and will be ready to apply your knowledge to research or commercial projects.
Table of Contents (11 chapters)

Summary

We have seen how to implement a feed-forward neural network (ffnn) architecture for an image classification problem.

An ffnn is characterized by a set of input units, a set of output units, and one or more hidden units that connect the input level from that output. The connections between the levels are total and in a single direction: each unit receives a signal from all the units of the previous layer and transmits its output value, suitably weighed to all units of the next layer. For each layer a transfer function (sigmoid, softmax, ReLU) must be defined: the choice of the transfer function depends on the architecture and then the addressed problem.

Then we implemented four different ffnn models, the first model with a single hidden layer with softmax activation function, and then three other more complex models, with five hidden layers in total, but with different activation functions:

  • Four sigmoid...