Book Image

Scala for Machine Learning, Second Edition - Second Edition

Book Image

Scala for Machine Learning, Second Edition - Second Edition

Overview of this book

The discovery of information through data clustering and classification is becoming a key differentiator for competitive organizations. Machine learning applications are everywhere, from self-driving cars, engineering design, logistics, manufacturing, and trading strategies, to detection of genetic anomalies. The book is your one stop guide that introduces you to the functional capabilities of the Scala programming language that are critical to the creation of machine learning algorithms such as dependency injection and implicits. You start by learning data preprocessing and filtering techniques. Following this, you'll move on to unsupervised learning techniques such as clustering and dimension reduction, followed by probabilistic graphical models such as Naïve Bayes, hidden Markov models and Monte Carlo inference. Further, it covers the discriminative algorithms such as linear, logistic regression with regularization, kernelization, support vector machines, neural networks, and deep learning. You’ll move on to evolutionary computing, multibandit algorithms, and reinforcement learning. Finally, the book includes a comprehensive overview of parallel computing in Scala and Akka followed by a description of Apache Spark and its ML library. With updated codes based on the latest version of Scala and comprehensive examples, this book will ensure that you have more than just a solid fundamental knowledge in machine learning with Scala.
Table of Contents (27 chapters)
Scala for Machine Learning Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Genetic algorithms and machine learning


The practical purpose of a genetic algorithm as an optimization technique is to solve problems by finding the most relevant or fittest solution among a set or group of solutions. Genetic algorithms have many applications in machine learning, as follows:

  • Discrete model parameters: Genetic algorithms are particularly effective in finding the set of discrete parameters that maximizes?. For example, the colorization of a black and white movie relies on a large but finite set of transformations from shades of grey to the RGB color scheme. The search space is composed of the different transformations and the objective function is the quality of the colorized version of the movie.

  • Reinforcement learning: Systems that select the most appropriate rules or policies to match a given dataset rely on genetic algorithms to evolve a set of rules over time. The search space or population is the set of candidate rules, and the objective function is the credit or reward...