Book Image

Python for Finance - Second Edition

By : Yuxing Yan
5 (1)
Book Image

Python for Finance - Second Edition

5 (1)
By: Yuxing Yan

Overview of this book

This book uses Python as its computational tool. Since Python is free, any school or organization can download and use it. This book is organized according to various finance subjects. In other words, the first edition focuses more on Python, while the second edition is truly trying to apply Python to finance. The book starts by explaining topics exclusively related to Python. Then we deal with critical parts of Python, explaining concepts such as time value of money stock and bond evaluations, capital asset pricing model, multi-factor models, time series analysis, portfolio theory, options and futures. This book will help us to learn or review the basics of quantitative finance and apply Python to solve various problems, such as estimating IBM’s market risk, running a Fama-French 3-factor, 5-factor, or Fama-French-Carhart 4 factor model, estimating the VaR of a 5-stock portfolio, estimating the optimal portfolio, and constructing the efficient frontier for a 20-stock portfolio with real-world stock, and with Monte Carlo Simulation. Later, we will also learn how to replicate the famous Black-Scholes-Merton option model and how to price exotic options such as the average price call option.
Table of Contents (23 chapters)
Python for Finance Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Index

Test of heteroskedasticity, Breusch, and Pagan


Breusch and Pagan (1979) designed a test to confirm or reject the null assumption that the residuals from a regression are homogeneous, that is, with a constant volatility. The following formula represents their logic. First, we run a linear regression of y against x:

Here, y is the dependent variable, x is the independent variable, α is the intercept, β is the coefficient, and is an error term. After we get the error term (residual), we run the second regression:

Assume that the fitted values from running the previous regression is t f, then the Breusch-Pangan (1979) measure is given as follows, and it follows a χ2 distribution with a k degree of freedom:

The following example is borrowed from an R package called lm.test (test linear regression), and its authors are Hothorn et al. (2014). We generate a time series of x, y1 and y2. The independent variable is x, and the dependent variables are y1 and y2. By our design, y1 is homogeneous, that...