Book Image

MongoDB Administrator???s Guide

By : Cyrus Dasadia
Book Image

MongoDB Administrator???s Guide

By: Cyrus Dasadia

Overview of this book

MongoDB is a high-performance and feature-rich NoSQL database that forms the backbone of the systems that power many different organizations. Packed with many features that have become essential for many different types of software professional and incredibly easy to use, this cookbook contains more than 100 recipes to address the everyday challenges of working with MongoDB. Starting with database configuration, you will understand the indexing aspects of MongoDB. The book also includes practical recipes on how you can optimize your database query performance, perform diagnostics, and query debugging. You will also learn how to implement the core administration tasks required for high-availability and scalability, achieved through replica sets and sharding, respectively. You will also implement server security concepts such as authentication, user management, role-based access models, and TLS configuration. You will also learn how to back up and recover your database efficiently and monitor server performance. By the end of this book, you will have all the information you need—along with tips, tricks, and best practices—to implement a high-performance MongoDB solution.
Table of Contents (17 chapters)
Title Page
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface

Changing storage engine


In this recipe, we will look at how to migrate existing data onto a new storage engine. MongoDB does not allow on the fly (live) migrations, so we will have to do it the hard way.

Getting ready

Ensure you have a MongoDB database installation ready.

How to do it...

  1. Start the mongod daemon to explicitly use MMAPv1 storage engine:
/data/mongodb/bin/mongod --dbpath /data/db --storageEngine mmapv1
  1. Start the mongo client and you should be presented with the MongoDB shell. Execute the following commands in the shell:
> var status = db.serverStatus()
> status['storageEngine']
{
   "name" : "mmapv1",
   "supportsCommittedReads" : false,
   "readOnly" : false,
   "persistent" : true
}
  1. Now let's add some random data into it. Run the following JavaScript code to insert 100 documents with random data:
> use mydb
> for(var x=0; x<100; x++){
  db.mycol.insert({
     age:(Math.round(Math.random()*100)%20)
     })
  }
> db.mycol.count()
100
  1. Exit the shell and perform a full backup using mongodump command:
mkdir /data/backup
mongodump -o /data/backup --host localhost:27017
  1. Now shutdown the mongod process.
  2. Create a new data directory for the migration and start the mongod daemon with a new storage engine:
mkdir /data/newdb
/data/mongodb/bin/mongod --dbpath /data/newdb --storageEngine wiredTiger
  1. Let's restore the previous backup to this new instance:
mongorestore /data/backup/
  1. Start the mongo shell and check your data:
> var status = db.serverStatus()
> status['storageEngine']
{
    "name" : "wiredTiger",
    "supportsCommittedReads" : true,
    "readOnly" : false,
    "persistent" : true
}
> use mydb
switched to db mydb
> db.mycol.count()
100

How it works...

As WiredTiger is the default storage engine for MongoDB 3.2, for this exercise, we explicitly started a MongoDB instance with MMAPv1 storage engine in step 1. In step 2, we stored the db.serverStatus() command's output in a temporary variable to inspect the output of the server's storageEngine key. This helps us see which storage engine our MongoDB instance is running on. In step 3, we switched to database mydb and ran a simple JavaScript function to add 100 documents to a collection called mycol. Next, in step 4, we created a backup directory /data/backup which is passed as a parameter to mongodump utility. We will discuss more about the mongodump utility in Chapter 6, Managing MongoDB Backups.

Once we shutdown the mongod instance, in step 5, we are now ready to start a new instance of MongoDB but this time with WiredTiger storage engine. We follow the basic practice of covering for failure and instead of removing /data/db, we create a new path for this instance (#AlwaysHaveABackupPlan). Our new MongoDB instance is empty, so in step 7 we import the aforementioned backup into the database using the mongorestore utility. As the new MongoDB instance is running WiredTiger storage engine, our backup (which is essentially BSON data) is restored and saved on disk using this storage engine. Lastly, in step 8, we simply inspect the storageEngine key on the db.serverStatus() output and confirm that we are indeed using WiredTiger.

As you can see, this is an overly simplistic example of how to convert MongoDB data from one storage engine format to another. One has to keep in mind that this operation will take a significant amount of time depending on the size of data. However, application downtime can be averted if we were to use a replica set. More on this later.