Book Image

Python Data Analysis - Second Edition

By : Ivan Idris
Book Image

Python Data Analysis - Second Edition

By: Ivan Idris

Overview of this book

Data analysis techniques generate useful insights from small and large volumes of data. Python, with its strong set of libraries, has become a popular platform to conduct various data analysis and predictive modeling tasks. With this book, you will learn how to process and manipulate data with Python for complex analysis and modeling. We learn data manipulations such as aggregating, concatenating, appending, cleaning, and handling missing values, with NumPy and Pandas. The book covers how to store and retrieve data from various data sources such as SQL and NoSQL, CSV fies, and HDF5. We learn how to visualize data using visualization libraries, along with advanced topics such as signal processing, time series, textual data analysis, machine learning, and social media analysis. The book covers a plethora of Python modules, such as matplotlib, statsmodels, scikit-learn, and NLTK. It also covers using Python with external environments such as R, Fortran, C/C++, and Boost libraries.
Table of Contents (22 chapters)
Python Data Analysis - Second Edition
Credits
About the Author
About the Reviewers
www.PacktPub.com
Customer Feedback
Preface
Key Concepts
Online Resources

NumPy random numbers


Random numbers are used in Monte Carlo methods, stochastic calculus, and more. Real random numbers are difficult to produce, so in practice, we use pseudo-random numbers. Pseudo-random numbers are sufficiently random for most intents and purposes, except for some very exceptional instances, such as very accurate simulations. The random number associated routines can be located in the NumPy random subpackage.

Note

The core random number generator is based on the Mersenne Twister algorithm (refer to https://en.wikipedia.org/wiki/Mersenne_twister).

Random numbers can be produced from discrete or continuous distributions. The distribution functions have an optional size argument, which informs NumPy how many numbers are to be created. You can specify either an integer or a tuple as the size. This will lead to an array of appropriate shapes filled with random numbers. Discrete distributions include geometric, hypergeometric, and binomial distributions. Continuous distributions...