Book Image

Deep Learning with Keras

By : Antonio Gulli, Sujit Pal
Book Image

Deep Learning with Keras

By: Antonio Gulli, Sujit Pal

Overview of this book

This book starts by introducing you to supervised learning algorithms such as simple linear regression, the classical multilayer perceptron and more sophisticated deep convolutional networks. You will also explore image processing with recognition of handwritten digit images, classification of images into different categories, and advanced objects recognition with related image annotations. An example of identification of salient points for face detection is also provided. Next you will be introduced to Recurrent Networks, which are optimized for processing sequence data such as text, audio or time series. Following that, you will learn about unsupervised learning algorithms such as Autoencoders and the very popular Generative Adversarial Networks (GANs). You will also explore non-traditional uses of neural networks as Style Transfer. Finally, you will look at reinforcement learning and its application to AI game playing, another popular direction of research and application of neural networks.
Table of Contents (16 chapters)
Title Page
Credits
About the Authors
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface

Reinforcement learning


Our objective is to build a neural network to play the game of catch. Each game starts with a ball being dropped from a random position from the top of the screen. The objective is to move a paddle at the bottom of the screen using the left and right arrow keys to catch the ball by the time it reaches the bottom. As games go, this is quite simple. At any point in time, the state of this game is given by the (x, y) coordinates of the ball and paddle. Most arcade games tend to have many more moving parts, so a general solution is to provide the entire current game screen image as the state. The following screenshot shows four consecutive screenshots of our catch game:

Astute readers might note that our problem could be modeled as a classification problem, where the input to the network are the game screen images and the output is one of three actions--move left, stay, or move right. However, this would require us to provide the network with training examples, possibly...