Book Image

Mastering TensorFlow 1.x

Book Image

Mastering TensorFlow 1.x

Overview of this book

TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected. The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems.
Table of Contents (21 chapters)
19
Tensor Processing Units

Application areas of RNNs

Some of the application areas where RNNs are used more often are as follows:

  • Natural Language Modeling: The RNN models have been used in natural language processing (NLP) for natural language understanding and natural language generation tasks. In NLP, an RNN model is given a sequence of words and it predicts another sequence of words. Thus, the trained models can be used for generating the sequence of words, a field known as Text Generation. For example, generating stories, and screenplays. Another area of NLP is language translation, where given a sequence of words in one language, the model predicts a sequence of words in another language.
  • Voice and Speech Recognition: The RNN models have great use in building models for learning from the audio data. In speech recognition, an RNN model is given audio data and it predicts a sequence of phonetic segments...