Book Image

TensorFlow 1.x Deep Learning Cookbook

Book Image

TensorFlow 1.x Deep Learning Cookbook

Overview of this book

Deep neural networks (DNNs) have achieved a lot of success in the field of computer vision, speech recognition, and natural language processing. This exciting recipe-based guide will take you from the realm of DNN theory to implementing them practically to solve real-life problems in the artificial intelligence domain. In this book, you will learn how to efficiently use TensorFlow, Google’s open source framework for deep learning. You will implement different deep learning networks, such as Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Deep Q-learning Networks (DQNs), and Generative Adversarial Networks (GANs), with easy-to-follow standalone recipes. You will learn how to use TensorFlow with Keras as the backend. You will learn how different DNNs perform on some popularly used datasets, such as MNIST, CIFAR-10, and Youtube8m. You will not only learn about the different mobile and embedded platforms supported by TensorFlow, but also how to set up cloud platforms for deep learning applications. You will also get a sneak peek at TPU architecture and how it will affect the future of DNNs. By using crisp, no-nonsense recipes, you will become an expert in implementing deep learning techniques in growing real-world applications and research areas such as reinforcement learning, GANs, and autoencoders.
Table of Contents (15 chapters)
14
TensorFlow Processing Units

Generating music with dilated ConvNets, WaveNet, and NSynth

WaveNet is a deep generative model for producing raw audio waveforms. This breakthrough technology has been introduced (https://deepmind.com/blog/wavenet-generative-model-raw-audio/) by Google DeepMind(https://deepmind.com/) for teaching how to speak to computers. The results are truly impressive and online you can find examples of synthetic voices where the computer learns how to talk with the voice of celebrities, such as Matt Damon.

So, you might wonder why learning to synthesize audio is so difficult. Well, each digital sound we hear is based on 16,000 samples per second (sometimes 48,000 or more) and building a predictive model where we learn to reproduce a sample based on all the previous ones is a very difficult challenge. Nevertheless, there are experiments showing that WaveNet has improved the current state...