Book Image

Mastering Machine Learning with scikit-learn - Second Edition

By : Gavin Hackeling
Book Image

Mastering Machine Learning with scikit-learn - Second Edition

By: Gavin Hackeling

Overview of this book

Machine learning is the buzzword bringing computer science and statistics together to build smart and efficient models. Using powerful algorithms and techniques offered by machine learning you can automate any analytical model. This book examines a variety of machine learning models including popular machine learning algorithms such as k-nearest neighbors, logistic regression, naive Bayes, k-means, decision trees, and artificial neural networks. It discusses data preprocessing, hyperparameter optimization, and ensemble methods. You will build systems that classify documents, recognize images, detect ads, and more. You will learn to use scikit-learn’s API to extract features from categorical variables, text and images; evaluate model performance, and develop an intuition for how to improve your model’s performance. By the end of this book, you will master all required concepts of scikit-learn to build efficient models at work to carry out advanced tasks with the practical approach.
Table of Contents (22 chapters)
Title Page
Credits
About the Author
About the Reviewer
www.PacktPub.com
Customer Feedback
Preface
9
From Decision Trees to Random Forests and Other Ensemble Methods
Index

Image quantization


In previous sections, we used clustering to explore the structure of a dataset. Now let's apply it to a different problem. Image quantization is a lossy compression method that replaces a range of similar colors in an image with a single color. Quantization reduces the size of the image file since fewer bits are required to represent the colors. In the following example, we will use clustering to discover a compressed palette for an image that contains its most important colors. We will then rebuild the image using the compressed palette. First we read and flatten the image:

# In[1]:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn.utils import shuffle
from PIL import Image

original_img = np.array(Image.open('tree.jpg'), dtype=np.float64) /
  255
original_dimensions = tuple(original_img.shape)
width, height, depth = tuple(original_img.shape)
image_flattened = np.reshape(original_img, (width * height, depth))

We then use...