Book Image

Java: Data Science Made Easy

By : Richard M. Reese, Jennifer L. Reese, Alexey Grigorev
Book Image

Java: Data Science Made Easy

By: Richard M. Reese, Jennifer L. Reese, Alexey Grigorev

Overview of this book

Data science is concerned with extracting knowledge and insights from a wide variety of data sources to analyse patterns or predict future behaviour. It draws from a wide array of disciplines including statistics, computer science, mathematics, machine learning, and data mining. In this course, we cover the basic as well as advanced data science concepts and how they are implemented using the popular Java tools and libraries.The course starts with an introduction of data science, followed by the basic data science tasks of data collection, data cleaning, data analysis, and data visualization. This is followed by a discussion of statistical techniques and more advanced topics including machine learning, neural networks, and deep learning. You will examine the major categories of data analysis including text, visual, and audio data, followed by a discussion of resources that support parallel implementation. Throughout this course, the chapters will illustrate a challenging data science problem, and then go on to present a comprehensive, Java-based solution to tackle that problem. You will cover a wide range of topics – from classification and regression, to dimensionality reduction and clustering, deep learning and working with Big Data. Finally, you will see the different ways to deploy the model and evaluate it in production settings. By the end of this course, you will be up and running with various facets of data science using Java, in no time at all. This course contains premium content from two of our recently published popular titles: - Java for Data Science - Mastering Java for Data Science
Table of Contents (29 chapters)
Title Page
Credits
Preface
Free Chapter
1
Module 1
15
Module 2
26
Bibliography

Summary


Machine learning is concerned with developing techniques that allow the applications to learn without having to be explicitly programmed to solve a problem. This flexibility allows such applications to be used in more varied settings with little to no modifications.

We saw how training data is used to create a model. Once the model has been trained, the model is evaluated using testing data. Both the training data and testing data come from the problem domain. Once trained, the model is used with other input data to make predictions.

 

We learned how the Weka Java API is used to create decision trees. This tree consists of internal nodes that represent different attributes of the problem. The leaves of the tree represent results. Since there are many ways of constructing a tree, part of the job of a decision tree is to create the best tree.

Support vector machines divide a dataset into sections thus classifying elements in the dataset. This classification s based on the attributes of...