Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Summary


In this chapter, we have presented the concept of a deep convolutional network, which is a generic architecture that can be employed in any visual processing task. The idea is based on hierarchical information management, aimed at extracting the features starting from low-level elements and moving forward until the high-level details that can be helpful to achieve specific goals.

The first topic was the concept of convolution and how it's applied in discrete and finite samples. We discussed the properties of standard convolution, before analyzing some important variants such as atrous (or dilated convolution), separable (and depthwise separable) convolution and, eventually, transpose convolution. All these methods can work with 1D, 2D, and 3D samples, even if the most diffused applications are based on bidimensional (not considering the channels) matrices representing static images. In the same section, we also discussed how pooling layers can be employed to reduce the dimensionality...