Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Contrastive pessimistic likelihood estimation


As explained at the beginning of this chapter, in many real life problems, it's cheaper to retrieve unlabeled samples, rather than correctly labeled ones. For this reason, many researchers worked to find out the best strategies to carry out a semi-supervised classification that could outperform the supervised counterpart. The idea is to train a classifier with a few labeled samples and then improve its accuracy after adding weighted unlabeled samples. One of the best results is the Contrastive Pessimistic Likelihood Estimation (CPLE) algorithm, proposed by M. Loog (in Loog M., Contrastive Pessimistic Likelihood Estimation for Semi-Supervised Classification, arXiv:1503.00269).

Before explaining this algorithm, an introduction is necessary. If we have a labeled dataset (X, Y) containing N samples, it's possible to define the log-likelihood cost function of a generic estimator, as follows:

After training the model, it should be possible to determine...