Book Image

Mastering Machine Learning Algorithms

Book Image

Mastering Machine Learning Algorithms

Overview of this book

Machine learning is a subset of AI that aims to make modern-day computer systems smarter and more intelligent. The real power of machine learning resides in its algorithms, which make even the most difficult things capable of being handled by machines. However, with the advancement in the technology and requirements of data, machines will have to be smarter than they are today to meet the overwhelming data needs; mastering these algorithms and using them optimally is the need of the hour. Mastering Machine Learning Algorithms is your complete guide to quickly getting to grips with popular machine learning algorithms. You will be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and will learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this book will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries such as scikit-learn v0.19.1. You will also learn how to use Keras and TensorFlow 1.x to train effective neural networks. If you are looking for a single resource to study, implement, and solve end-to-end machine learning problems and use-cases, this is the book you need.
Table of Contents (22 chapters)
Title Page
Dedication
Packt Upsell
Contributors
Preface
13
Deep Belief Networks
Index

Batch normalization


Let's consider a mini-batch of k samples:

Before traversing the network, we can measure a mean and a variance:

After the first layer (for simplicity, let's suppose that the activation function, f(•), is the always the same), the batch is transformed into the following:

In general, there's no guarantee that the new mean and variance are the same. On the contrary, it's easy to observe a modification that increases throughout the network. This phenomenon is called covariate shift, and it's responsible for a progressive training speed decay due to the different adaptations needed in each layer. Ioffe and Szegedy (in Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift, Ioffe S., Szegedy C., arXiv:1502.03167 [cs.LG]) proposed a method to mitigate this problem, which has been called batch normalization (BN).

The idea is to renormalize the linear output of a layer (before or after applying the activation function), so that the batch has null...