Book Image

Building Machine Learning Systems with Python - Third Edition

By : Luis Pedro Coelho, Willi Richert, Matthieu Brucher
Book Image

Building Machine Learning Systems with Python - Third Edition

By: Luis Pedro Coelho, Willi Richert, Matthieu Brucher

Overview of this book

Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI). With this guide’s hands-on approach, you’ll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You’ll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you’ll understand how to use Python’s scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance. By the end of this book, you’ll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.
Table of Contents (17 chapters)
Free Chapter
1
Getting Started with Python Machine Learning

Combining multiple methods

We now combine the aforementioned methods into a single prediction. This seems intuitively a good idea, but how can we do this in practice? Perhaps the first thought that comes to mind is that we can average the predictions. This might give decent results, but there is no reason to think that all estimated predictions should be treated the same. It might be that one is better than the others.

We can try a weighted average, multiplying each prediction by a given weight before summing it all up. How do we find the best weights, though? We learn them from the data, of course!

Ensemble learning:
We are using a general technique in machine learning that is not just applicable in regression: ensemble learning. We learn an ensemble (that is, a set) of predictors. Then, we combine them to obtain a single output. What is interesting is that we can see each prediction...