Book Image

Building Machine Learning Systems with Python - Third Edition

By : Luis Pedro Coelho, Willi Richert, Matthieu Brucher
Book Image

Building Machine Learning Systems with Python - Third Edition

By: Luis Pedro Coelho, Willi Richert, Matthieu Brucher

Overview of this book

Machine learning enables systems to make predictions based on historical data. Python is one of the most popular languages used to develop machine learning applications, thanks to its extensive library support. This updated third edition of Building Machine Learning Systems with Python helps you get up to speed with the latest trends in artificial intelligence (AI). With this guide’s hands-on approach, you’ll learn to build state-of-the-art machine learning models from scratch. Complete with ready-to-implement code and real-world examples, the book starts by introducing the Python ecosystem for machine learning. You’ll then learn best practices for preparing data for analysis and later gain insights into implementing supervised and unsupervised machine learning techniques such as classification, regression and clustering. As you progress, you’ll understand how to use Python’s scikit-learn and TensorFlow libraries to build production-ready and end-to-end machine learning system models, and then fine-tune them for high performance. By the end of this book, you’ll have the skills you need to confidently train and deploy enterprise-grade machine learning models in Python.
Table of Contents (17 chapters)
Free Chapter
1
Getting Started with Python Machine Learning

Introducing the Naïve Bayes classifier

Naïve Bayes is probably one of the most elegant machine learning algorithms out there that is of practical use. And despite its name, it is not that naïve when you look at its classification performance. It proves to be quite robust to irrelevant features, which it kindly ignores. It learns fast and predicts equally so. It does not require lots of storage. So, why is it called naïve?

The Naïve was added to account for one assumption that is required for Naïve Bayes to work optimally. The assumption is that the features are uncorrelated. This, however, is rarely the case for real-world applications. Nevertheless, it still returns very good accuracy in practice, even when the independence assumption does not hold.

Getting...