Book Image

Advanced Deep Learning with Keras

By : Rowel Atienza
Book Image

Advanced Deep Learning with Keras

By: Rowel Atienza

Overview of this book

Recent developments in deep learning, including Generative Adversarial Networks (GANs), Variational Autoencoders (VAEs), and Deep Reinforcement Learning (DRL) are creating impressive AI results in our news headlines - such as AlphaGo Zero beating world chess champions, and generative AI that can create art paintings that sell for over $400k because they are so human-like. Advanced Deep Learning with Keras is a comprehensive guide to the advanced deep learning techniques available today, so you can create your own cutting-edge AI. Using Keras as an open-source deep learning library, you'll find hands-on projects throughout that show you how to create more effective AI with the latest techniques. The journey begins with an overview of MLPs, CNNs, and RNNs, which are the building blocks for the more advanced techniques in the book. You’ll learn how to implement deep learning models with Keras and TensorFlow 1.x, and move forwards to advanced techniques, as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You then learn all about GANs, and how they can open new levels of AI performance. Next, you’ll get up to speed with how VAEs are implemented, and you’ll see how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans - a major stride forward for modern AI. To complete this set of advanced techniques, you'll learn how to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
Advanced Deep Learning with Keras
Contributors
Preface
Other Books You May Enjoy
Index

Conclusion


In this chapter, we've covered the principles of variational autoencoders (VAEs). As we learned in the principles of VAEs, they bear a resemblance to GANs in the aspect of both attempt to create synthetic outputs from latent space. However, it can be noticed that the VAE networks are much simpler and easier to train compared to GANs. It's becoming clear how conditional VAE and

-VAE are similar in concept to conditional GAN and disentangled representation GAN respectively.

VAEs have an intrinsic mechanism to disentangle the latent vectors. Therefore, building a

-VAE is straightforward. We should note however that interpretable and disentangled codes are important in building intelligent agents.

In the next chapter, we're going to focus on Reinforcement learning. Without any prior data, an agent learns by interacting with its world. We'll discuss how the agent can be rewarded for correct actions and punished for the wrong ones.