Book Image

Hands-On Transfer Learning with Python

By : Dipanjan Sarkar, Nitin Panwar, Raghav Bali, Tamoghna Ghosh
Book Image

Hands-On Transfer Learning with Python

By: Dipanjan Sarkar, Nitin Panwar, Raghav Bali, Tamoghna Ghosh

Overview of this book

Transfer learning is a machine learning (ML) technique where knowledge gained during training a set of problems can be used to solve other similar problems. The purpose of this book is two-fold; firstly, we focus on detailed coverage of deep learning (DL) and transfer learning, comparing and contrasting the two with easy-to-follow concepts and examples. The second area of focus is real-world examples and research problems using TensorFlow, Keras, and the Python ecosystem with hands-on examples. The book starts with the key essential concepts of ML and DL, followed by depiction and coverage of important DL architectures such as convolutional neural networks (CNNs), deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM), and capsule networks. Our focus then shifts to transfer learning concepts, such as model freezing, fine-tuning, pre-trained models including VGG, inception, ResNet, and how these systems perform better than DL models with practical examples. In the concluding chapters, we will focus on a multitude of real-world case studies and problems associated with areas such as computer vision, audio analysis and natural language processing (NLP). By the end of this book, you will be able to implement both DL and transfer learning principles in your own systems.
Table of Contents (14 chapters)

Formulating our objective

The main objective of our real-world case study is image captioning or scene recognition. This is a supervised learning problem to an extent, but not a traditional classification problem. Here, we will be working on an image dataset, known as Flickr8K, with samples of images or scenes and corresponding natural language captions describing them. The idea is to build a system that can learn from these images and start captioning images automatically.

As I mentioned earlier, a traditional image classification system typically classifies or categorizes images into predefined classes. We have already built such a system in previous chapters. However, the output from an image captioning system is generally a sequence of words forming a textual description in natural language; this makes it more difficult than a traditional supervised classification system.

...