Book Image

Hands-On Reinforcement Learning with Python

By : Sudharsan Ravichandiran
Book Image

Hands-On Reinforcement Learning with Python

By: Sudharsan Ravichandiran

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. Hands-On Reinforcement learning with Python will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The book starts with an introduction to Reinforcement Learning followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms and concepts, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. This example-rich guide will introduce you to deep reinforcement learning algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many more of the recent advancements in reinforcement learning. By the end of the book, you will have all the knowledge and experience needed to implement reinforcement learning and deep reinforcement learning in your projects, and you will be all set to enter the world of artificial intelligence.
Table of Contents (16 chapters)

Trust Region Policy Optimization

Before understanding Trust Region Policy Optimization (TRPO), we need to understand constrained policy optimization. We know that in RL agents learn by trial and error to maximize the reward. To find the best policy, our agents will explore all different actions and choose the one that gives a good reward. While exploring different actions there is a very good chance that our agents will explore bad actions as well. But the biggest challenge is when we allow our agents to learn in the real world and when the reward functions are not properly designed. For example, consider an agent learning to walk without hitting any obstacles. The agent will receive a negative reward if it gets hit by any obstacle and a positive reward for not getting hit by any obstacle. To figure out the best policy, the agent explores different actions. The agent also takes...