Book Image

Hands-On Intelligent Agents with OpenAI Gym

By : Palanisamy P
Book Image

Hands-On Intelligent Agents with OpenAI Gym

By: Palanisamy P

Overview of this book

Many real-world problems can be broken down into tasks that require a series of decisions to be made or actions to be taken. The ability to solve such tasks without a machine being programmed requires a machine to be artificially intelligent and capable of learning to adapt. This book is an easy-to-follow guide to implementing learning algorithms for machine software agents in order to solve discrete or continuous sequential decision making and control tasks. Hands-On Intelligent Agents with OpenAI Gym takes you through the process of building intelligent agent algorithms using deep reinforcement learning starting from the implementation of the building blocks for configuring, training, logging, visualizing, testing, and monitoring the agent. You will walk through the process of building intelligent agents from scratch to perform a variety of tasks. In the closing chapters, the book provides an overview of the latest learning environments and learning algorithms, along with pointers to more resources that will help you take your deep reinforcement learning skills to the next level.
Table of Contents (12 chapters)

Practical applications of reinforcement and deep reinforcement learning algorithms

Until recently, practical applications of reinforcement learning and deep reinforcement learning were limited, due to sample complexity and instability. But, these algorithms proved to be quite powerful in solving some really hard practical problems. Some of them are listed here to give you an idea:

  • Learning to play video games better than humans: This news has probably reached you by now. Researchers at DeepMind and others developed a series of algorithms, starting with DeepMind's Deep-Q-Network, or DQN for short, which reached human-level performance in playing Atari games. We will actually be implementing this algorithm in a later chapter of this book! In essence, it is a deep variant of the Q-learning algorithm we briefly saw in this chapter, with a few changes that increased the speed...