Book Image

TensorFlow Machine Learning Projects

By : Ankit Jain, Amita Kapoor
Book Image

TensorFlow Machine Learning Projects

By: Ankit Jain, Amita Kapoor

Overview of this book

TensorFlow has transformed the way machine learning is perceived. TensorFlow Machine Learning Projects teaches you how to exploit the benefits—simplicity, efficiency, and flexibility—of using TensorFlow in various real-world projects. With the help of this book, you’ll not only learn how to build advanced projects using different datasets but also be able to tackle common challenges using a range of libraries from the TensorFlow ecosystem. To start with, you’ll get to grips with using TensorFlow for machine learning projects; you’ll explore a wide range of projects using TensorForest and TensorBoard for detecting exoplanets, TensorFlow.js for sentiment analysis, and TensorFlow Lite for digit classification. As you make your way through the book, you’ll build projects in various real-world domains, incorporating natural language processing (NLP), the Gaussian process, autoencoders, recommender systems, and Bayesian neural networks, along with trending areas such as Generative Adversarial Networks (GANs), capsule networks, and reinforcement learning. You’ll learn how to use the TensorFlow on Spark API and GPU-accelerated computing with TensorFlow to detect objects, followed by how to train and develop a recurrent neural network (RNN) model to generate book scripts. By the end of this book, you’ll have gained the required expertise to build full-fledged machine learning projects at work.
Table of Contents (23 chapters)
Title Page
Copyright and Credits
Dedication
About Packt
Contributors
Preface
Index

Introducing Gaussian processes


The Gaussian process (GP) can be thought of as an alternative Bayesian approach to regression problems. They are also referred to as infinite dimensional Gaussian distributions. GP defines a priori over functions that can be converted into a posteriori once we have observed a few data points. Although it doesn’t seem possible to define distributions over functions, it turns out that we only need to define distributions over a function's values at observed data points.

Formally, let's say that we observed a function,

, at n values

 as

. The function is a GP if all of the values, 

, are jointly Gaussian, with a mean of 

 and a covariance of 

  given by

. Here, the 

 function defines how two variables are related to each other. We will discuss different kinds of kernels later in this section. The joint Gaussian distribution of many Gaussian variables is also known as Multivariate Gaussian. 

From the previous temperature example, we can imagine that various functions...