Book Image

Numerical Computing with Python

By : Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim, Theodore Petrou
Book Image

Numerical Computing with Python

By: Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim, Theodore Petrou

Overview of this book

Data mining, or parsing the data to extract useful insights, is a niche skill that can transform your career as a data scientist Python is a flexible programming language that is equipped with a strong suite of libraries and toolkits, and gives you the perfect platform to sift through your data and mine the insights you seek. This Learning Path is designed to familiarize you with the Python libraries and the underlying statistics that you need to get comfortable with data mining. You will learn how to use Pandas, Python's popular library to analyze different kinds of data, and leverage the power of Matplotlib to generate appealing and impressive visualizations for the insights you have derived. You will also explore different machine learning techniques and statistics that enable you to build powerful predictive models. By the end of this Learning Path, you will have the perfect foundation to take your data mining skills to the next level and set yourself on the path to become a sought-after data science professional. This Learning Path includes content from the following Packt products: • Statistics for Machine Learning by Pratap Dangeti • Matplotlib 2.x By Example by Allen Yu, Claire Chung, Aldrin Yim • Pandas Cookbook by Theodore Petrou
Table of Contents (21 chapters)
Title Page
Contributors
About Packt
Preface
Index

AdaBoost classifier


Boosting is another state-of-the-art model that is being used by many data scientists to win so many competitions. In this section, we will be covering the AdaBoost algorithm, followed by gradient boost and extreme gradient boost (XGBoost). Boosting is a general approach that can be applied to many statistical models. However, in this book, we will be discussing the application of boosting in the context of decision trees. In bagging, we have taken multiple samples from the training data and then combined the results of individual trees to create a single predictive model; this method runs in parallel, as each bootstrap sample does not depend on others. Boosting works in a sequential manner and does not involve bootstrap sampling; instead, each tree is fitted on a modified version of an original dataset and finally added up to create a strong classifier:

The preceding figure is the sample methodology on how AdaBoost works. We will cover step-by-step procedures in detail...