Book Image

Numerical Computing with Python

By : Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim, Theodore Petrou
Book Image

Numerical Computing with Python

By: Pratap Dangeti, Allen Yu, Claire Chung, Aldrin Yim, Theodore Petrou

Overview of this book

Data mining, or parsing the data to extract useful insights, is a niche skill that can transform your career as a data scientist Python is a flexible programming language that is equipped with a strong suite of libraries and toolkits, and gives you the perfect platform to sift through your data and mine the insights you seek. This Learning Path is designed to familiarize you with the Python libraries and the underlying statistics that you need to get comfortable with data mining. You will learn how to use Pandas, Python's popular library to analyze different kinds of data, and leverage the power of Matplotlib to generate appealing and impressive visualizations for the insights you have derived. You will also explore different machine learning techniques and statistics that enable you to build powerful predictive models. By the end of this Learning Path, you will have the perfect foundation to take your data mining skills to the next level and set yourself on the path to become a sought-after data science professional. This Learning Path includes content from the following Packt products: • Statistics for Machine Learning by Pratap Dangeti • Matplotlib 2.x By Example by Allen Yu, Claire Chung, Aldrin Yim • Pandas Cookbook by Theodore Petrou
Table of Contents (21 chapters)
Title Page
Contributors
About Packt
Preface
Index

Gradient boosting classifier


Gradient boosting is one of the competition-winning algorithms that work on the principle of boosting weak learners iteratively by shifting focus towards problematic observations that were difficult to predict in previous iterations and performing an ensemble of weak learners, typically decision trees. It builds the model in a stage-wise fashion as other boosting methods do, but it generalizes them by allowing optimization of an arbitrary differentiable loss function.

Let's start understanding Gradient Boosting with a simple example, as GB challenges many data scientists in terms of understanding the working principle:

  1. Initially, we fit the model on observations producing 75% accuracy and the remaining unexplained variance is captured in the error term:
  1. Then we will fit another model on the error term to pull the extra explanatory component and add it to the original model, which should improve the overall accuracy:
  1. Now, the model is providing 80% accuracy and the...