Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Variational autoencoder in TensorFlow


Variational autoencoders are the modern generative version of autoencoders. Let's build a variational autoencoder for the same preceding problem. We will test the autoencoder by providing images from the original and noisy test set.

We will use a different coding style to build this autoencoder for the purpose of demonstrating the different styles of coding with TensorFlow:

  1. Start by defining the hyper-parameters:
learning_rate = 0.001
n_epochs = 20
batch_size = 100
n_batches = int(mnist.train.num_examples/batch_size)
# number of pixels in the MNIST image as number of inputs
n_inputs = 784
n_outputs = n_inputs
  1. Next, define a parameter dictionary to hold the weight and bias parameters: 
params={}
  1. Define the number of hidden layers in each of the encoder and decoder:
n_layers = 2
# neurons in each hidden layer
n_neurons = [512,256] 
  1. The new addition in a variational encoder is that we define the dimensions of the latent variable z:
n_neurons_z = 128 # the dimensions...