Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

Manifold learning


In Chapter 02, Introduction to Semi-Supervised Learning, we discussed the manifold assumption, saying that high-dimensional data normally lies on low-dimensional manifolds. Of course, this is not a theorem, but in many real cases, the assumption is proven to be correct, and it allows us to work with non-linear dimensionality reduction algorithms that would be otherwise unacceptable. In this section, we're going to analyze some of these algorithms. They are all implemented in Scikit-Learn, therefore it's easy to try them with complex datasets.

Isomap

Isomap is one of the simplest algorithms, and it's based on the idea of reducing the dimensionality while trying to preserve the geodesic distances measured on the original manifold where the input data lies. The algorithm works in three steps. The first operation is a k-nearest neighbors clustering and the construction of the following graph. The vertices will be the samples, while the edges represent the connections among nearest...