Book Image

Python: Advanced Guide to Artificial Intelligence

By : Giuseppe Bonaccorso, Rajalingappaa Shanmugamani
Book Image

Python: Advanced Guide to Artificial Intelligence

By: Giuseppe Bonaccorso, Rajalingappaa Shanmugamani

Overview of this book

This Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries. You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. By the end of this Learning Path, you'll have obtained in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems This Learning Path includes content from the following Packt products: • Mastering Machine Learning Algorithms by Giuseppe Bonaccorso • Mastering TensorFlow 1.x by Armando Fandango • Deep Learning for Computer Vision by Rajalingappaa Shanmugamani
Table of Contents (31 chapters)
Title Page
About Packt
Contributors
Preface
19
Tensor Processing Units
Index

MLE and MAP learning


Let's suppose we have a data generating process pdataused to draw a dataset X:

In many statistical learning tasks, our goal is to find the optimal parameter set θ according to a maximization criterion. The most common approach is based on the likelihood and is called MLE. In this case, the optimal set θ is found as follows:

This approach has the advantage of being unbiased by wrong preconditions, but, at the same time, it excludes any possibility of incorporating prior knowledge into the model. It simply looks for the best θ in a wider subspace, so that p(X|θ) is maximized. Even if this approach is almost unbiased, there's a higher probability of finding a sub-optimal solution that can also be quite different from a reasonable (even if not sure) prior. After all, several models are too complex to allow us to define a suitable prior probability (think, for example, of reinforcement learning strategies where there's a huge number of complex states). Therefore, MLE offers...