Book Image

Apache Spark 2: Data Processing and Real-Time Analytics

By : Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei
Book Image

Apache Spark 2: Data Processing and Real-Time Analytics

By: Romeo Kienzler, Md. Rezaul Karim, Sridhar Alla, Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen Mei

Overview of this book

Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more. With this Learning Path, you can take your knowledge of Apache Spark to the next level by learning how to expand Spark's functionality and building your own data flow and machine learning programs on this platform. You will work with the different modules in Apache Spark, such as interactive querying with Spark SQL, using DataFrames and datasets, implementing streaming analytics with Spark Streaming, and applying machine learning and deep learning techniques on Spark using MLlib and various external tools. By the end of this elaborately designed Learning Path, you will have all the knowledge you need to master Apache Spark, and build your own big data processing and analytics pipeline quickly and without any hassle. This Learning Path includes content from the following Packt products: • Mastering Apache Spark 2.x by Romeo Kienzler • Scala and Spark for Big Data Analytics by Md. Rezaul Karim, Sridhar Alla • Apache Spark 2.x Machine Learning Cookbook by Siamak Amirghodsi, Meenakshi Rajendran, Broderick Hall, Shuen MeiCookbook
Table of Contents (23 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

Summary


So why do we have two different streaming engines within the same data processing framework? We hope that after reading this chapter, you'll agree that the main pain points of the classical DStream based engine have been addressed. Formerly, event time-based processing was not possible and only the arrival time of data was considered. Then, late data has simply been processed with the wrong timestamp as only processing time could be used. Also, batch and stream processing required using two different APIs: RDDs and DStreams. Although the API is similar, it is not exactly the same; therefore, the rewriting of code when going back and forth between the two paradigms was necessary. Finally, an end-to-end delivery guarantee was hard to achieve and required lots of user intervention and thinking.

This fault-tolerant end-to-end exactly-once delivery guarantee is achieved through offset tracking and state management in a fault-tolerant Write Ahead Log in conjunction with fault-tolerant sources...