Book Image

Data Science for Marketing Analytics

By : Tommy Blanchard, Debasish Behera, Pranshu Bhatnagar
Book Image

Data Science for Marketing Analytics

By: Tommy Blanchard, Debasish Behera, Pranshu Bhatnagar

Overview of this book

Data Science for Marketing Analytics covers every stage of data analytics, from working with a raw dataset to segmenting a population and modeling different parts of the population based on the segments. The book starts by teaching you how to use Python libraries, such as pandas and Matplotlib, to read data from Python, manipulate it, and create plots, using both categorical and continuous variables. Then, you'll learn how to segment a population into groups and use different clustering techniques to evaluate customer segmentation. As you make your way through the chapters, you'll explore ways to evaluate and select the best segmentation approach, and go on to create a linear regression model on customer value data to predict lifetime value. In the concluding chapters, you'll gain an understanding of regression techniques and tools for evaluating regression models, and explore ways to predict customer choice using classification algorithms. Finally, you'll apply these techniques to create a churn model for modeling customer product choices. By the end of this book, you will be able to build your own marketing reporting and interactive dashboard solutions.
Table of Contents (12 chapters)
Data Science for Marketing Analytics
Preface

Support Vector Machines


When dealing with data that is linearly separable, the goal of the Support Vector Machine (SVM) learning algorithm is to find the boundary between classes so that there are fewer misclassification errors. However, the problem is that there could be several decision boundaries (B1, B2), as you can see in the following figure:

Figure 8.1: Multiple decision boundary

As a result, the question arises as to which of the boundaries is better, and how to define better. The solution is to use margin as the optimization objective.

The objective of the SVM algorithm is to maximize the margin. The margin of a linear classifier is to increase the width of the boundary before hitting a data point. The algorithm first finds out the width of the hyperplane and then maximizes the margin. It chooses the decision boundary that has the maximum margin. So, for instance in the above figure, it chooses B1:

Note

In geometry, a hyperplane is a subspace whose dimension is one less than that of...