Book Image

Applied Deep Learning with Keras

By : Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Book Image

Applied Deep Learning with Keras

By: Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme

Overview of this book

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code. Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model. By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.
Table of Contents (12 chapters)
Applied Deep Learning with Keras
Preface
Preface

L1 and L2 Regularization


The most common type of regularization for deep learning models is the one that keeps the weights of the network small. This type of regularization is called weight regularization and has two different variations: L2 regularization and L1 regularization. In this section, you will learn about these regularization methods in detail, along with how to implement them in Keras. Additionally, you will practice applying them to real-life problems and observe how they can improve the performance of a model.

L1 and L2 Regularization Formulation

In weight regularization, a penalizing term is added to the loss function. This term is either L2 norm (the sum of the squared values) of the weights, or L1 norm (the sum of the absolute values) of the weights. If L1 norm is used, then it will be called L1 regularization. If L2 norm is used, then it will be called L2 regularization. In each case, the sum is multiplied by a hyperparameter called a regularization parameter (lambda).

Therefore...