Book Image

Applied Deep Learning with Keras

By : Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme
Book Image

Applied Deep Learning with Keras

By: Ritesh Bhagwat, Mahla Abdolahnejad, Matthew Moocarme

Overview of this book

Though designing neural networks is a sought-after skill, it is not easy to master. With Keras, you can apply complex machine learning algorithms with minimum code. Applied Deep Learning with Keras starts by taking you through the basics of machine learning and Python all the way to gaining an in-depth understanding of applying Keras to develop efficient deep learning solutions. To help you grasp the difference between machine and deep learning, the book guides you on how to build a logistic regression model, first with scikit-learn and then with Keras. You will delve into Keras and its many models by creating prediction models for various real-world scenarios, such as disease prediction and customer churning. You’ll gain knowledge on how to evaluate, optimize, and improve your models to achieve maximum information. Next, you’ll learn to evaluate your model by cross-validating it using Keras Wrapper and scikit-learn. Following this, you’ll proceed to understand how to apply L1, L2, and dropout regularization techniques to improve the accuracy of your model. To help maintain accuracy, you’ll get to grips with applying techniques including null accuracy, precision, and AUC-ROC score techniques for fine tuning your model. By the end of this book, you will have the skills you need to use Keras when building high-level deep neural networks.
Table of Contents (12 chapters)
Applied Deep Learning with Keras
Preface
Preface

Image Augmentation


The word augmentation means the action or process of making or becoming greater in size or amount. Image or data augmentation works in a similar manner. Image/data augmentation creates many batches of our images. Then, it applies random transformations on random images inside the batches. Data transformation can be rotating images, shifting them, flipping them, and so on. By applying this transformation, we get more diverse images inside the batches, and we also have much more data than we had originally.

A cylinder can be rotated from different angles and seen differently. In the following figure, a single cylinder is seen from five different angles. So, we have effectively created five different images from a single image:

Figure 7.13: Image augmentation of a cylinder

The following is example code of image augmentation; here, the ImageDataGenerator class is used for processing. shear_range, zoom_range, and horizontal_flip are all used for the transformation of images:

from...