Book Image

Python Reinforcement Learning

By : Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo
Book Image

Python Reinforcement Learning

By: Sudharsan Ravichandiran, Sean Saito, Rajalingappaa Shanmugamani, Yang Wenzhuo

Overview of this book

Reinforcement Learning (RL) is the trending and most promising branch of artificial intelligence. This Learning Path will help you master not only the basic reinforcement learning algorithms but also the advanced deep reinforcement learning algorithms. The Learning Path starts with an introduction to RL followed by OpenAI Gym, and TensorFlow. You will then explore various RL algorithms, such as Markov Decision Process, Monte Carlo methods, and dynamic programming, including value and policy iteration. You'll also work on various datasets including image, text, and video. This example-rich guide will introduce you to deep RL algorithms, such as Dueling DQN, DRQN, A3C, PPO, and TRPO. You will gain experience in several domains, including gaming, image processing, and physical simulations. You'll explore TensorFlow and OpenAI Gym to implement algorithms that also predict stock prices, generate natural language, and even build other neural networks. You will also learn about imagination-augmented agents, learning from human preference, DQfD, HER, and many of the recent advancements in RL. By the end of the Learning Path, you will have all the knowledge and experience needed to implement RL and deep RL in your projects, and you enter the world of artificial intelligence to solve various real-life problems. This Learning Path includes content from the following Packt products: • Hands-On Reinforcement Learning with Python by Sudharsan Ravichandiran • Python Reinforcement Learning Projects by Sean Saito, Yang Wenzhuo, and Rajalingappaa Shanmugamani
Table of Contents (27 chapters)
Title Page
About Packt
Contributors
Preface
Index

DARQN


We have improved our DQN architecture by adding a recurrent layer, which captures temporal dependency, and we called it DRQN. Do you think we can improve our DRQN architecture further? Yes. We can further improve our DRQN architecture by adding the attention layer on top of the convolutional layer. So, what is the function of the attention layer? Attention implies the literal meaning of the word. Attention mechanisms are widely used in image captioning, object detection, and so on. Consider the task of neural networks captioning the image; to understand what is in the image, the network has to give attention to the specific object in the image for generating the caption.

Similarly, when we add the attention layer to our DRQN, we can select and pay attention to small regions of the image, and ultimately this reduces the number of parameters in the network and also reduces the training and testing time. Unlike DRQN, LSTM layers in DARQN not only stored previous state information for taking...