Book Image

Blockchain Development with Hyperledger

By : Salman A. Baset, Luc Desrosiers, Nitin Gaur, Petr Novotny, Anthony O'Dowd, Venkatraman Ramakrishna, Weimin Sun, Xun (Brian) Wu
Book Image

Blockchain Development with Hyperledger

By: Salman A. Baset, Luc Desrosiers, Nitin Gaur, Petr Novotny, Anthony O'Dowd, Venkatraman Ramakrishna, Weimin Sun, Xun (Brian) Wu

Overview of this book

Blockchain and Hyperledger are open source technologies that power the development of decentralized applications. This Learning Path is your helpful reference for exploring and building blockchain networks using Ethereum, Hyperledger Fabric, and Hyperledger Composer. Blockchain Development with Hyperledger will start off by giving you an overview of blockchain and demonstrating how you can set up an Ethereum development environment for developing, packaging, building, and testing campaign-decentralized applications. You'll then explore the de facto language Solidity, which you can use to develop decentralized applications in Ethereum. Following this, you'll be able to configure Hyperledger Fabric and use it to build private blockchain networks and applications that connect to them. Toward the later chapters, you'll learn how to design and launch a network, and even implement smart contracts in chain code. By the end of this Learning Path, you'll be able to build and deploy your own decentralized applications by addressing the key pain points encountered in the blockchain life cycle. This Learning Path includes content from the following Packt products: • Blockchain Quick Start Guide by Xun (Brian) Wu and Weimin Sun • Hands-On Blockchain with Hyperledger by Nitin Gaur et al.
Table of Contents (25 chapters)
Title Page
Copyright
About Packt
Contributors
Preface
Index

What is solidity?


Solidity is a statically typed contract language that contains state variables, functions, and common data types. Developers are able to write decentralized applications (DApps) that implement business logic functions in a smart contract. The contract verifies and enforces the constraints at compile time, as opposed to runtime. Solidity is compiled to EVM executable byte code. Once compiled, the contracts are uploaded to the Ethereum network. The blockchain will assign an address to the smart contract. Any permissioned user on the blockchain network can call a contract function to execute the smart contract. 

Here is a typical flow diagram showing the process from writing contract code to deploying and running it on the Ethereum network: