Book Image

RabbitMQ Essentials. - Second Edition

By : Lovisa Johansson, David Dossot
Book Image

RabbitMQ Essentials. - Second Edition

By: Lovisa Johansson, David Dossot

Overview of this book

RabbitMQ is an open source message queuing software that acts as a message broker using the Advanced Message Queuing Protocol (AMQP). This book will help you to get to grips with RabbitMQ to build your own applications with a message queue architecture. You’ll learn from the experts from CloudAMQP as they share what they've learned while managing the largest fleet of RabbitMQ clusters in the world. Following the case study of Complete Car, you’ll discover how you can use RabbitMQ to provide exceptional customer service and user experience, and see how a message queue architecture makes it easy to upgrade the app and add features as the company grows. From implementing simple synchronous operations through to advanced message routing and tracking, you’ll explore how RabbitMQ streamlines scalable operations for fast distribution. This book will help you understand the advantages of message queue architecture, including application scalability, resource efficiency, and user reliability. Finally, you’ll learn best practices for working with RabbitMQ and be able to use this book as a reference guide for your future app development projects. By the end of this book, you’ll have learned how to use message queuing software to streamline the development of your distributed and scalable applications.
Table of Contents (8 chapters)

The application architecture behind CC

CC needs one application that is used by the taxi drivers and one that is used by the customer. The customer should be able to request a taxi via the application, and the taxi driver should be able to accept a request (the ride):

Fig 2.2: The customer requests a taxi via the CC application

The customer should be able to enter information about the starting point and the endpoint of the trip. Active drivers receive the requests and are able to accept them. The customer should, in the end, be able to follow the location of the taxi during the trip.

The following diagram shows the messaging architecture that CC wants to achieve:

Fig 2.3: CC's main application architecture

This flow can be explained in 10 steps, as highlighted in the preceding diagram:

  1. A customer uses CC's mobile application to book a taxi. A request is now sent from the mobile application to the Application Service. This request includes information about the trip that the customer wants to book.
  2. The Application Service stores the request in a database.
  3. The Application Service adds a message with information about the trip to a queue in RabbitMQ.
  4. Connected taxi cars subscribe to the message (the booking request).
  5. A taxi responds to the customer by sending a message back to RabbitMQ.
  6. The Application Service subscribes to the messages.
  7. Again, the Application Service stores the information in a database.
  8. The Application Service forwards the information to the customer.
  9. The taxi app starts to automatically send the taxi's geographical location at a given interval to RabbitMQ.
  10. The location of the taxi is then passed straight to the customer's mobile application, via WebSockets, so that they know when the taxi arrives.

Let's begin by taking a closer look at steps 1, 2, 3, and 4, as shown in the preceding diagram, where a customer requests a taxi (a message is published to RabbitMQ) and a taxi driver receives the request (a message is consumed from RabbitMQ).