Book Image

Hands-On C++ Game Animation Programming

By : Gabor Szauer
Book Image

Hands-On C++ Game Animation Programming

By: Gabor Szauer

Overview of this book

Animation is one of the most important parts of any game. Modern animation systems work directly with track-driven animation and provide support for advanced techniques such as inverse kinematics (IK), blend trees, and dual quaternion skinning. This book will walk you through everything you need to get an optimized, production-ready animation system up and running, and contains all the code required to build the animation system. You’ll start by learning the basic principles, and then delve into the core topics of animation programming by building a curve-based skinned animation system. You’ll implement different skinning techniques and explore advanced animation topics such as IK, animation blending, dual quaternion skinning, and crowd rendering. The animation system you will build following this book can be easily integrated into your next game development project. The book is intended to be read from start to finish, although each chapter is self-contained and can be read independently as well. By the end of this book, you’ll have implemented a modern animation system and got to grips with optimization concepts and advanced animation techniques.
Table of Contents (17 chapters)

Skinning with dual quaternions

In this section, you will learn how to modify the skinning algorithm so that it works with dual quaternions instead of matrices. Specifically, you will replace the skin matrix with a skin dual quaternion that will transform both the vertex position and normal position.

The problem dual quaternions solve is the linear blending of matrices, which is currently implemented in a vertex shader. Specifically, this is the bit of code that introduces the skinning artifacts:

mat4 skin;
skin  = (pose[joints.x] * invBindPose[joints.x]) * weights.x;
skin += (pose[joints.y] * invBindPose[joints.y]) * weights.y;
skin += (pose[joints.z] * invBindPose[joints.z]) * weights.z;
skin += (pose[joints.w] * invBindPose[joints.w]) * weights.w;

There are three stages in the animation pipeline where it makes sense to replace matrices with dual quaternions. Each of these will have the same result. The three places where this should be implemented are listed here...