Book Image

Hands-On C++ Game Animation Programming

By : Gabor Szauer
Book Image

Hands-On C++ Game Animation Programming

By: Gabor Szauer

Overview of this book

Animation is one of the most important parts of any game. Modern animation systems work directly with track-driven animation and provide support for advanced techniques such as inverse kinematics (IK), blend trees, and dual quaternion skinning. This book will walk you through everything you need to get an optimized, production-ready animation system up and running, and contains all the code required to build the animation system. You’ll start by learning the basic principles, and then delve into the core topics of animation programming by building a curve-based skinned animation system. You’ll implement different skinning techniques and explore advanced animation topics such as IK, animation blending, dual quaternion skinning, and crowd rendering. The animation system you will build following this book can be easily integrated into your next game development project. The book is intended to be read from start to finish, although each chapter is self-contained and can be read independently as well. By the end of this book, you’ll have implemented a modern animation system and got to grips with optimization concepts and advanced animation techniques.
Table of Contents (17 chapters)

Summary

In this chapter, you learned how to encode animation data to textures, as well as how to interpret the data in a vertex shader. Several strategies for improving performance by changing how the animation data is encoded were also covered. This technique of writing data into a texture can be used to bake any kind of sampled data.

To bake an animation, you need to clip out into a texture. This clip was sampled at set intervals. The global position of every bone was recorded at each interval and written to a texture. In this animation texture, every joint takes up three rows: one for position, one for rotation, and one for scale.

You rendered the crowd mesh using instancing and created a shader that can read per-instance data from uniform arrays. Per instance-data for actors of the crowd, such as position, rotation, and scale, were passed to the shader as uniform arrays and interpreted using the instance ID as an index into those arrays.

Finally, you created the Crowd...