Book Image

Mastering PyTorch - Second Edition

By : Ashish Ranjan Jha
4 (1)
Book Image

Mastering PyTorch - Second Edition

4 (1)
By: Ashish Ranjan Jha

Overview of this book

PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most out of your data and build complex neural network models. You’ll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation, using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You’ll deploy PyTorch models to production, including mobile devices. Finally, you’ll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai to prototype models and PyTorch Lightning to train models. You’ll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face. By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Table of Contents (21 chapters)
20
Index

Operationalizing PyTorch Models into Production

So far in this book, we have covered how to train and test different kinds of machine learning models using PyTorch. We started by reviewing the basic elements of PyTorch that enable us to work on deep learning tasks efficiently. Then, we explored a wide range of deep learning model architectures and applications that can be written using PyTorch.

In this chapter, we will focus on taking these models into production. But what does that mean? Basically, we will discuss the different ways of taking a trained and tested model (object) into a separate environment where it can be used to make predictions or inferences on incoming data. This is what is referred to as the productionization of a model, as the model is deployed into a production system.

We will begin by discussing some common approaches you can take to serve PyTorch models in production environments, starting from defining a simple model inference function and going all...