Book Image

Mastering PyTorch - Second Edition

By : Ashish Ranjan Jha
4 (1)
Book Image

Mastering PyTorch - Second Edition

4 (1)
By: Ashish Ranjan Jha

Overview of this book

PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most out of your data and build complex neural network models. You’ll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation, using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You’ll deploy PyTorch models to production, including mobile devices. Finally, you’ll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai to prototype models and PyTorch Lightning to train models. You’ll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face. By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Table of Contents (21 chapters)
20
Index

Exporting universal PyTorch models using TorchScript and ONNX

We have discussed serving PyTorch models extensively in the previous sections of this chapter, which is perhaps the most critical aspect of operationalizing PyTorch models in production systems. In this section, we will look at another important aspect – exporting PyTorch models. We have already learned how to save PyTorch models and load them back from disk in the classic Python scripting environment. But we need more ways of exporting PyTorch models. Why?

Well, for starters, the Python interpreter allows only one thread to run at a time using the global interpreter lock (GIL). This keeps us from parallelizing operations. Secondly, Python might not be supported on every system or device on which we might want to run our models. To address these problems, PyTorch offers support for exporting its models in an efficient format and in a platform- or language-agnostic manner such that a model can be run in environments...