Book Image

Mastering PyTorch - Second Edition

By : Ashish Ranjan Jha
4 (1)
Book Image

Mastering PyTorch - Second Edition

4 (1)
By: Ashish Ranjan Jha

Overview of this book

PyTorch is making it easier than ever before for anyone to build deep learning applications. This PyTorch deep learning book will help you uncover expert techniques to get the most out of your data and build complex neural network models. You’ll build convolutional neural networks for image classification and recurrent neural networks and transformers for sentiment analysis. As you advance, you'll apply deep learning across different domains, such as music, text, and image generation, using generative models, including diffusion models. You'll not only build and train your own deep reinforcement learning models in PyTorch but also learn to optimize model training using multiple CPUs, GPUs, and mixed-precision training. You’ll deploy PyTorch models to production, including mobile devices. Finally, you’ll discover the PyTorch ecosystem and its rich set of libraries. These libraries will add another set of tools to your deep learning toolbelt, teaching you how to use fastai to prototype models and PyTorch Lightning to train models. You’ll discover libraries for AutoML and explainable AI (XAI), create recommendation systems, and build language and vision transformers with Hugging Face. By the end of this book, you'll be able to perform complex deep learning tasks using PyTorch to build smart artificial intelligence models.
Table of Contents (21 chapters)
20
Index

Using the Hugging Face Datasets library with PyTorch

Using the Hugging Face datasets library with PyTorch enables easy access to thousands of public datasets and simplifies handling custom ones. There are over 144,000 (in May 2024) datasets available on Hugging Face, which can be checked with the following lines of code:

from huggingface_hub import hf_api
datasets = hf_api.list_datasets()
len([d for d in datasets])

To get started with the Hugging Face datasets library, make sure you have installed the following dependencies:

pip install torch datasets transformers

All code for this section is available on GitHub [9]. First, we should import the required libraries and set up the environment:

import torch
from datasets import load_dataset
from transformers import BertTokenizer

We import the load_dataset function from the datasets library. We plan to use the BERT model for our demonstration, hence we import the BertTokenizer to convert text into tokens.

...