Book Image

Bioinformatics with Python Cookbook - Third Edition

By : Tiago Antao
Book Image

Bioinformatics with Python Cookbook - Third Edition

By: Tiago Antao

Overview of this book

Bioinformatics is an active research field that uses a range of simple-to-advanced computations to extract valuable information from biological data, and this book will show you how to manage these tasks using Python. This updated third edition of the Bioinformatics with Python Cookbook begins with a quick overview of the various tools and libraries in the Python ecosystem that will help you convert, analyze, and visualize biological datasets. Next, you'll cover key techniques for next-generation sequencing, single-cell analysis, genomics, metagenomics, population genetics, phylogenetics, and proteomics with the help of real-world examples. You'll learn how to work with important pipeline systems, such as Galaxy servers and Snakemake, and understand the various modules in Python for functional and asynchronous programming. This book will also help you explore topics such as SNP discovery using statistical approaches under high-performance computing frameworks, including Dask and Spark. In addition to this, you’ll explore the application of machine learning algorithms in bioinformatics. By the end of this bioinformatics Python book, you'll be equipped with the knowledge you need to implement the latest programming techniques and frameworks, empowering you to deal with bioinformatics data on every scale.
Table of Contents (15 chapters)

Managing datasets with PLINK

Here, we will manage our dataset using PLINK. We will create subsets of our main dataset (from the HapMap project) that are suitable for analysis in the following recipes.


Note that neither PLINK nor any similar programs were developed for their file formats. There was probably no objective to create a default file standard for population genetics data. In this field, you will need to be ready to convert from format to format (for this, Python is quite appropriate) because every application that you will use will probably have its own quirky requirements. The most important point to learn from this recipe is that it’s not formats that are being used, although these are relevant, but a ‘file conversion mentality’. Beyond this, some of the steps in this recipe also convey genuine analytical techniques that you may want to consider using, for example, subsampling or Linkage Disequilibrium- (LD-) pruning.

Getting ready