Book Image

Bioinformatics with Python Cookbook - Third Edition

By : Tiago Antao
Book Image

Bioinformatics with Python Cookbook - Third Edition

By: Tiago Antao

Overview of this book

Bioinformatics is an active research field that uses a range of simple-to-advanced computations to extract valuable information from biological data, and this book will show you how to manage these tasks using Python. This updated third edition of the Bioinformatics with Python Cookbook begins with a quick overview of the various tools and libraries in the Python ecosystem that will help you convert, analyze, and visualize biological datasets. Next, you'll cover key techniques for next-generation sequencing, single-cell analysis, genomics, metagenomics, population genetics, phylogenetics, and proteomics with the help of real-world examples. You'll learn how to work with important pipeline systems, such as Galaxy servers and Snakemake, and understand the various modules in Python for functional and asynchronous programming. This book will also help you explore topics such as SNP discovery using statistical approaches under high-performance computing frameworks, including Dask and Spark. In addition to this, you’ll explore the application of machine learning algorithms in bioinformatics. By the end of this bioinformatics Python book, you'll be equipped with the knowledge you need to implement the latest programming techniques and frameworks, empowering you to deal with bioinformatics data on every scale.
Table of Contents (15 chapters)

Performing a PCA

PCA is a statistical procedure that’s used to perform a reduction of the dimension of a number of variables to a smaller subset that is linearly uncorrelated. Its practical application in population genetics is assisting with the visualization of the relationships between the individuals that are being studied.

While most of the recipes in this chapter make use of Python as a glue language (Python calls external applications that actually do most of the work), with PCA, we have an option: we can either use an external application (for example, EIGENSOFT SmartPCA) or use scikit-learn and perform everything on Python. In this recipe, we will use SmartPCA – for a native machine learning experience with scikit-learn, see Chapter 10.

TIP

You actually have a third option: using sgkit. However, I want to show you alternatives on how to perform computations. There are two good reasons for this. Firstly, you might prefer not to use sgkit – while...