Book Image

Hands-On C++ Game Animation Programming

By : Gabor Szauer
Book Image

Hands-On C++ Game Animation Programming

By: Gabor Szauer

Overview of this book

Animation is one of the most important parts of any game. Modern animation systems work directly with track-driven animation and provide support for advanced techniques such as inverse kinematics (IK), blend trees, and dual quaternion skinning. This book will walk you through everything you need to get an optimized, production-ready animation system up and running, and contains all the code required to build the animation system. You’ll start by learning the basic principles, and then delve into the core topics of animation programming by building a curve-based skinned animation system. You’ll implement different skinning techniques and explore advanced animation topics such as IK, animation blending, dual quaternion skinning, and crowd rendering. The animation system you will build following this book can be easily integrated into your next game development project. The book is intended to be read from start to finish, although each chapter is self-contained and can be read independently as well. By the end of this book, you’ll have implemented a modern animation system and got to grips with optimization concepts and advanced animation techniques.
Table of Contents (17 chapters)

Creating the TransformTrack class

For any animated transform, you don't want to maintain separate vector and quaternion tracks; instead, you build a higher-level structure—the transform track. A transform track encapsulates three tracks—one for the position, one for the rotation, and one for scale. You can sample the transform track at any point and get a full transform back, even if the component tracks are of different durations or start at different times.

One thing to consider is how you want to store these transform tracks in relation to an animated model. The skeleton of a model contains several bones. You can either store a vector of transform tracks—one for each bone—or you can add bone ID as a member of the transform track and only store as many as are needed.

This is important because a character can have a lot of bones, but not all animations will animate all of those bones. If you store one transform track for each bone, it wastes...