Book Image

Data Cleaning and Exploration with Machine Learning

By : Michael Walker
Book Image

Data Cleaning and Exploration with Machine Learning

By: Michael Walker

Overview of this book

Many individuals who know how to run machine learning algorithms do not have a good sense of the statistical assumptions they make and how to match the properties of the data to the algorithm for the best results. As you start with this book, models are carefully chosen to help you grasp the underlying data, including in-feature importance and correlation, and the distribution of features and targets. The first two parts of the book introduce you to techniques for preparing data for ML algorithms, without being bashful about using some ML techniques for data cleaning, including anomaly detection and feature selection. The book then helps you apply that knowledge to a wide variety of ML tasks. You’ll gain an understanding of popular supervised and unsupervised algorithms, how to prepare data for them, and how to evaluate them. Next, you’ll build models and understand the relationships in your data, as well as perform cleaning and exploration tasks with that data. You’ll make quick progress in studying the distribution of variables, identifying anomalies, and examining bivariate relationships, as you focus more on the accuracy of predictions in this book. By the end of this book, you’ll be able to deal with complex data problems using unsupervised ML algorithms like principal component analysis and k-means clustering.
Table of Contents (23 chapters)
1
Section 1 – Data Cleaning and Machine Learning Algorithms
5
Section 2 – Preprocessing, Feature Selection, and Sampling
9
Section 3 – Modeling Continuous Targets with Supervised Learning
13
Section 4 – Modeling Dichotomous and Multiclass Targets with Supervised Learning
19
Section 5 – Clustering and Dimensionality Reduction with Unsupervised Learning

SVMs for multiclass classification

All of the same concerns that we had when we used SVC for binary classification apply when we are doing multiclass classification. We need to determine whether the classes are linearly separable, and if not, which kernel will yield the best results. As discussed in the first section of this chapter, we also need to decide whether that classification is best modeled as one-versus-one or one-versus-rest. One-versus-one finds decision boundaries that separate each class from each of the other classes. One-versus-rest finds decision boundaries that distinguish each class from all other instances. We try both approaches in this section.

We will work with the machine failure data that we worked with in previous chapters.

Note

This dataset on machine failure is available for public use at https://www.kaggle.com/datasets/shivamb/machine-predictive-maintenance-classification. There are 10,000 observations, 12 features, and two possible targets. One...