Book Image

Data Cleaning and Exploration with Machine Learning

By : Michael Walker
Book Image

Data Cleaning and Exploration with Machine Learning

By: Michael Walker

Overview of this book

Many individuals who know how to run machine learning algorithms do not have a good sense of the statistical assumptions they make and how to match the properties of the data to the algorithm for the best results. As you start with this book, models are carefully chosen to help you grasp the underlying data, including in-feature importance and correlation, and the distribution of features and targets. The first two parts of the book introduce you to techniques for preparing data for ML algorithms, without being bashful about using some ML techniques for data cleaning, including anomaly detection and feature selection. The book then helps you apply that knowledge to a wide variety of ML tasks. You’ll gain an understanding of popular supervised and unsupervised algorithms, how to prepare data for them, and how to evaluate them. Next, you’ll build models and understand the relationships in your data, as well as perform cleaning and exploration tasks with that data. You’ll make quick progress in studying the distribution of variables, identifying anomalies, and examining bivariate relationships, as you focus more on the accuracy of predictions in this book. By the end of this book, you’ll be able to deal with complex data problems using unsupervised ML algorithms like principal component analysis and k-means clustering.
Table of Contents (23 chapters)
1
Section 1 – Data Cleaning and Machine Learning Algorithms
5
Section 2 – Preprocessing, Feature Selection, and Sampling
9
Section 3 – Modeling Continuous Targets with Supervised Learning
13
Section 4 – Modeling Dichotomous and Multiclass Targets with Supervised Learning
19
Section 5 – Clustering and Dimensionality Reduction with Unsupervised Learning

Using kernels with PCA

With some data, it is not possible to construct principal components that are linearly separable. This may not actually be easy to visualize in advance of our modeling. Fortunately, there are tools we can use to determine the kernel that will yield the best results, including a linear kernel. Kernel PCA with a linear kernel should perform similarly to standard PCA.

In this section, we will use kernel PCA for feature extraction with data on labor force participation rates, educational attainment, teenage birth frequency, and participation in politics by gender at the country level.

Note

This dataset on gender-based differences in educational and labor force outcomes is made available for public use by the United Nations Development Program at https://www.kaggle.com/datasets/undp/human-development. There is one record per country with aggregate employment, income, and education data by gender for 2015.

Let’s start building the model:

    ...